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Abstract
An ultradiscretization of the Riemann theta function is proposed. The
ultradiscretization satisfies an addition formula, which is an ultradiscrete
analogue of an addition formula for the Riemann theta function. Using
the addition formula, periodic multiwave solutions to the Toda-type cellular
automaton are obtained.

PACS numbers: 02.30.Ik, 05.45.Yv, 87.17.−d

1. Introduction

The discrete two-dimensional Toda (2D d-Toda) equation proposed by Hirota [1] is a full
discrete version of the 2D Toda lattice equation. The bilinear form, which is equivalent to the
discrete KP equation, is given as follows:

f t+1
n,mf t−1

n,m − f t
n,m+1f

t
n,m−1

δ2
= f t

n+1,mf t
n−1,m − f t

n,m+1f
t
n,m−1 (1)

where δ is a positive number. The bilinear form (1) is reduced to the one of the 2D Toda
lattice equation in the continuous limit δ → +0. In 1990, Takahashi and Satsuma proposed an
important ultradiscrete integrable system called the soliton cellular automaton (SCA) [2]. In
1996, a general method to obtain the SCA from discrete soliton equations was proposed [3].
This procedure, which is called the ultradiscretization, has been applied to various kinds of
soliton equations [4, 5]. In this context, the 2D d-Toda equation was ultradiscretized and the
2D Toda-type CA (TTCA) was obtained [6]. Introduce a new variable ρt

n,m and a parameter
L through

f t
n,m = e

ρt
n,m
ε δ2 = e− L

ε

where ε is a positive number. Substitute these into (1) and take the limit ε → +0, then the
bilinear form of the 2D TTCA is obtained:

ρt+1
n,m + ρt−1

n,m = max
[
ρt

n,m+1 + ρt
n,m−1, ρ

t
n+1,m + ρt

n−1,m − L
]

(2)
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where we use an identity for A,B ∈ R

lim
ε→+0

ε log
(
e

A
ε + e

B
ε

) = max[A,B].

By introducing a variable Ut
n,m through

Ut
n,m = ρt

n+1,m + ρt
n−1,m − ρt

n,m+1 − ρt
n,m−1 (3)

the evolution rule of the 2D TTCA is reduced

Ut+1
n,m + Ut−1

n,m − Ut
n,m+1 − Ut

n,m−1 = max
[
0, U t

n+1,m − L
]

+ max
[
0, U t

n−1,m − L
]

− max
[
0, U t

n,m+1 − L
] − max

[
0, U t

n,m−1 − L
]
.

The variable Ut
n,m stands for the value of the cell at position (n,m) and time t.

Remark 1. The 1D TTCA [4] is reduced from the 2D TTCA by eliminating the independent
variable m.

It is known that the 2D TTCA has the N-soliton solution, which is an ultradiscretization of
the one to the 2D d-Toda equation [6]. On the other hand, it is also known that the 2D d-Toda
equation has algebro-geometric solutions expressed by the Riemann theta function ϑ(z,�),
whose degeneration is the N-soliton solution [7]. However, as far as the author knows, such
(quasi-) periodic multiwave solutions to the 2D TTCA have not been obtained yet.

In [8], we propose an ultradiscretization of elliptic theta function ϑ00(z, τ ), which is
denoted by �0(x), and obtain an addition formula. The addition formula is reduced from
an ultradiscrete analogue of Riemann’s theta formula. Using the addition formula, periodic
single wave solutions to the 1D TTCA and the box-ball system [5, 9, 10] are obtained. In
this letter, we propose an ultradiscretization of ϑ(z,�) and derive an addition formula from
an ultradiscrete analogue of the generalized Riemann theta formula. We show that we can
obtain periodic multiwave solutions to the 2D TTCA by using the addition formula. Note
that addition properties for ϑ(z,�) play an important role in the study of discrete integrable
systems [11, 12]. The solutions thus obtained can be directly connected to the one to the 2D
d-Toda equation through the ultradiscretization.

2. Ultradiscrete Riemann theta function

The Riemann theta function ϑ(z,�) in g variables is defined as follows [13]:

ϑ(z,�) :=
∑
n∈Z

g

eπ i〈n,�n〉 e2π i〈n,z〉

where z ∈ C
g , � is a symmetric g × g complex matrix whose imaginary part is positive

definite and 〈,〉 : C
g × C

g → C is the standard inner product. In this letter, we propose an
ultradiscretization of ϑ(z,�) for general g ∈ N.

Note a functional equation

ϑ(z,�) = det

(
�

i

)−1/2

e−π i〈z,�−1z〉ϑ(�−1z,−�−1).

Let � = iπεB, where B is a positive definite and symmetric g × g real matrix and ε is a
positive number. Then we obtain

ϑ(z,�) = det(πεB)−
1
2 e− 1

ε
〈z,B−1z〉 ∑

n∈Z
g

e− 1
ε
〈n,B−1n〉 e

2
ε
〈n,B−1z〉.
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Assume Im z = 0 then the function always takes positive values. Hence, we can ultradiscretize
ϑ(z,�) on R

g . Actually, we have

lim
ε→+0

ε log† ϑ(z,�)|Im z=0 = −〈Re z, B−1 Re z〉 + max
n∈Z

g
[〈n, B−1(2 Re z − n)〉]

where we assume that log† f1f2 · · · fn := Logf1 + Logf2 + · · · + Logfn and Logf stands for
the principal value of log f . We denote this by �(x;B) and call the ultradiscrete Riemann
theta function. The periodicity of the original function survives trough the ultradiscretization;
�(x;B) has the following periodicity:

�(x + m;B) = �(x;B) for ∀m ∈ Z
g.

Remark 2. Let B be a diagonal matrix then �(x;B) is expressed by the sum of the ultradiscrete
elliptic theta function �0(x):

�(x;B) =
g∑

j=1

1

Bjj

�0(xj )

where we assume Bjj (j = 1, 2, . . . , g) to be the j th diagonal element of B and xj

(j = 1, 2, . . . , g) the j th element of x.

The ultradiscrete Riemann theta function �(x;B) satisfies an addition formula, which is
an ultradiscrete analogue of the following addition formula for ϑ(z,�):

ϑ(x + u,�)ϑ(x − u,�)ϑ(0,�)2

= 1

2g

∑
α,β∈ 1

2 Z
g/Z

g

e4π i〈α,�α+x+u〉ϑ(x + �α + β,�)2ϑ(u + �α + β,�)2. (4)

In order to derive the addition formula for �(x;B), we first show an ultradiscrete analogue of
the generalized Riemann theta formula.

Theorem 1. Let

(
y1,y2,y3,y4

)
:= 1

2
(x1,x2,x3,x4)




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 .

Then, for xi ∈ R
g (i = 1, 2, 3, 4), the following identity holds:

max
β∈ 1

2 Z
g/Z

g

[
4∑

i=1

�(xi + β;B)

]
= max

β∈ 1
2 Z

g/Z
g

[
4∑

i=1

�(yi + β;B)

]
. (5)

Proof. By the definition of �(x;B), equation (5) is reduce to the following:

max
β∈ 1

2 Z
g/Z

g

[
4∑

i=1

max
ni∈Z

g
[〈ni − β, B−1(2xi − (ni − β))〉]

]

= max
β∈ 1

2 Z
g/Z

g

[
4∑

i=1

max
ni∈Z

g
[〈ni − β, B−1(2yi − (ni − β))〉]

]
. (6)
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Noting an identity

4∑
i=1

max
ni∈Z

g
[〈ni − β, B−1(2xi − (ni − β))〉]

= max
n1,n2,n3,n4∈Z

g

[
4∑

i=1

〈ni − β, B−1 (2xi − (ni − β))〉
]

we have

lhs of (6) = max
β∈ 1

2 Z
g/Z

g

[
max

n1,n2,n3,n4∈Z
g

[
4∑

i=1

〈ni − β, B−1 (2xi − (ni − β))〉
]]

.

Let

(m1,m2,m3,m4) := (n1,n2,n3,n4) T

where we put

T := 1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 .

Note that

T Z
4 =


(a1, a2, a3, a4)

∣∣∣∣∣∣aj ∈ 1

2
Z, aj + ak ∈ Z,

4∑
j=1

aj ∈ 2Z




so that coset representatives for T Z
4 ∩ Z

4 in T Z
4 are (0, 0, 0, 0) and

(
1
2 , 1

2 , 1
2 , 1

2

)
. Also note

the following identities:

4∑
i=1

〈ni , B
−1ni〉 =

4∑
i=1

〈mi , B
−1mi〉

4∑
i=1

〈ni , B
−1xi〉 =

4∑
i=1

〈mi , B
−1yi〉

we have

lhs of (6) = max
β∈ 1

2 Z
g/Z

g

[
max

m1,m2,m3,m4∈Z
g

[
4∑

i=1

〈mi − β, B−1(2yi − (mi − β))〉
]]

= rhs of (6).

This completes the proof. �

By setting x := x1 = x2 and u := x3 = x4 in (5), we get

2 max
β∈ 1

2 Z
g/Z

g
[�(x + β;B) + �(u + β;B)]

= max
β∈ 1

2 Z
g/Z

g
[�(x + u + β;B) + �(x − u + β;B) + 2�(β;B)].

Noting an inequality for x

�(x + β;B) + �(β;B) � �(x;B) for ∀β ∈ 1
2 Z

g
/

Z
g

we obtain the following addition formula.
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Corollary 1 (Addition formula). For x,u ∈ R
g , the following identity holds:

�(x + u;B) + �(x − u;B) = 2 max
β∈ 1

2 Z
g/Z

g
[�(x + β;B) + �(u + β;B)] . (7)

3. Solutions to the 2D TTCA

Now we construct periodic multiwave solutions to the 2D TTCA. Let

ρt
n,m = �(x;B) + 〈x, B−1x〉 x = un + vt + wm. (8)

We consider two kinds of dispersion relations, one for single wave and the other for multiwave.
For single wave, we assume that u,v and w ∈ R

g satisfy the following dispersion relations:

�(v;B) + 〈v, B−1v〉 = 0 (9)

�(w;B) + 〈w, B−1w〉 = 0 (10)

�(w;B) − �
(
w + 1

2 ;B)
> �(v;B) − �

(
v + 1

2 ;B)
> �(u;B) − �

(
u + 1

2 ;B)
(11)

max
[
�(α;B) + �(u;B),�

( 1
2 + α;B)

+ �
( 1

2 + u;B)]
� �(u + α;B)

for 0, 1
2 �= α ∈ 1

2 Z
g
/

Z
g (12)

max
[
�(α;B) + �(v;B),�

( 1
2 + α;B)

+ �
( 1

2 + v;B)]
� �(v + α;B)

for 0, 1
2 �= α ∈ 1

2 Z
g
/

Z
g (13)

max
[
�(α;B) + �(w;B),�

( 1
2 + α;B)

+ �
( 1

2 + w;B)]
� �(w + α;B)

for 0, 1
2 �= α ∈ 1

2 Z
g
/

Z
g (14)

where 1
2 stands for a g-vector t

(
1
2 , . . . , 1

2

) ∈ R
g . For multiwave, we assume the following:

〈w, B−1w〉 � 〈u, B−1v〉 (15)

〈w, B−1w〉 � 〈v, B−1v〉 (16)

u ≡ ±v ≡ ±w (mod Z
g). (17)

We assume that the parameter L in (2) is given as follows:

L = 2
(〈u, B−1u〉 − 〈v, B−1v〉 + �

(
u + 1

2 ;B) − �
(
v + 1

2 ;B))
. (18)

Substitute (8) into the bilinear form of the 2D TTCA (2). Then, by using the addition
formula (7), the left-hand side of (2) is reduced to

ρt+1
n,m + ρt−1

n,m = 2 max
β∈ 1

2 Z
g/Z

g
[�(x + β;B) + �(v + β;B)] + 2〈v, B−1v〉 + 2〈x, B−1x〉

= 2 max
[
�(x;B),�

(
x + 1

2 ;B) − �(v;B) − �
(
v + 1

2 ;B)]
+ 2〈x, B−1x〉

where we use the assumption (9) and (13). On the other hand, the right-hand side of (2) is
reduced to

max
[
ρt

n,m+1 + ρt
n,m−1, ρ

t
n+1,m + ρt

n−1,m − L
]

= 2 max
[
�(x;B),�

(
x + 1

2 ;B) − �(w;B) + �
(
w + 1

2 ;B)
,

�(x;B) + �(u;B) − �
(
u + 1

2 ;B) − �(v;B) + �
(
v + 1

2 ;B)
,

�
(
x + 1

2 ;B) − �(v;B) − �
(
v + 1

2 ;B) ]
+ 2〈x, B−1x〉

= 2 max
[
�(x;B),�

(
x + 1

2 ;B) − �(v;B) − �
(
v + 1

2 ;B)]
+ 2〈x, B−1x〉
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-2 -1 0 1 2
n

-2

-1

0

1

2

t

Figure 1. The periodic multiwave solution to the 1D TTCA with the choice of the parameter (19)
on the nt-plane. A higher value is drawn in a brighter grey. There exist two periodic waves whose
velocities are 1 and 1

3 , respectively. The phases of the periodic waves shift after the collision.

where we use the assumption (10)–(12) and (14). Thus, we conclude that if u,v and w
satisfy the dispersion relations (9)–(14) then (8) solves (2). Similarly, if u, v and w satisfy
the dispersion relations (15)–(17) then (8) solves (2). We obtain a periodic multiwave solution
to the 2D TTCA from (8) through the relation (3).

Example 1. By setting w = 0, we consider the 1D TTCA. Assume g = 2. Put

B =
(

1
5

1
11

1
11

1
13

)
u = (

3
2 ,− 1

2

)
v = (− 1

2 , 1
2

)
. (19)

Then B,u and v satisfy the dispersion relations (15)–(17) and we obtain a periodic multiwave
solution Ut

n to the 1D TTCA through the relation (3) with eliminating m (see figure 1). The
solution has periodic behaviour with respect to n → n + 2 and t → t + 2. We can see
soliton-like behaviour of the periodic waves.

Now we show that we can obtain the solution (8) to the 2D TTCA form the one to the
2D d-Toda equation through the ultradiscretization. For any g, the procedure is essentially
the same; substitute a solution expressed by ϑ(z,�) into the bilinear form of the 2D d-Toda
equation and, by using an addition formula, obtain dispersion relations; then ultradiscretize the
solution and the dispersion relations. Especially, for g = 1, the addition formula for ϑ(z,�)

(resp. �(x;B)) is nothing but the bilinear form of the 2D d-Toda equation (resp. 2D TTCA).
Therefore, we show the case g = 1.

Note an addition formula for elliptic theta function ϑ00(z) := ϑ00(z, τ )

ϑ00(x + y)ϑ00(x − y)ϑ00(0)2 − (ϑ00(x)2ϑ00(y)2 + ϑ11(x)2ϑ11(y)2) = 0. (20)

Then an identity for ϑ00(z) is reduced:
2∑

i=0

D(yi+1, yi+2)ϑ00(x + yi)ϑ00(x − yi) = 0 (21)
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where we put

D(a, b) := ϑ00(a)2ϑ11(b)2 − ϑ11(a)2ϑ00(b)2.

The subscripts of y are considered mod 3.
Let

f t
n,m = η e

π i
τ

x2
ϑ00(x, τ ) η := e− π i

4 τ
1
2 x = ũn + ṽt + w̃m. (22)

By substituting (22) into (21), we see that if the following holds

δ2 = exp

(
−2π i

τ
(ũ2 − ṽ2)

)
D(w̃, ṽ)

D(w̃, ũ)
(23)

1 = exp
(

2π i
τ

ṽ2
)

D(w̃, ũ)

{
exp

(
−2π i

τ
ũ2

)
D(w̃, ṽ) + exp

(
−2π i

τ
w̃2

)
D(ṽ, ũ)

}
(24)

then (22) solves the bilinear form of the 2D d-Toda equation (1).

Remark 3. Assume τ to be pure imaginary then there exist real solutions ũ, ṽ and w̃ to (24).

Remark 4. Assume w̃ = 0 in (22)–(24) then a periodic single wave solution to the 1D d-Toda
equation is reduced.

Now we ultradiscretize the identity (21). If we substitute g = 1 and B = 1 into �(x;B),
then we obtain the ultradiscrete elliptic theta function [8, 14]:

�0(x) := �(x; 1) = −x2 + max
n∈Z

[2nx − n2].

Elliptic theta function ϑ11(z) is ultradiscretized as follows [8]:

lim
ε→+0

ε log† ϑ11(z, iπε)|Im z= π
4 ε = �0

(
Re z + 1

2

) =: � 1
2
(Re z).

By setting g = 1 in the addition formula (7), we obtain an addition formula for �0(x):

�0(x + u) + �0(x − u) = 2 max
[
�0(x) + �0(u),� 1

2
(x) + � 1

2
(u)

]
. (25)

Using the addition formula (25), we obtain an identity

�0(x + y0) + �0(x − y0) = max
[
�0(x + y1) + �0(x − y1) + 2� 1

2
(y0) − 2� 1

2
(y1),

�0(x + y2) + �0(x − y2) + 2�0(y0) − 2�0(y2)
]

(26)

under an assumption

�0(y1) − � 1
2
(y1) < �0(y0) − � 1

2
(y0) < �0(y2) − � 1

2
(y2). (27)

Actually, noting the inequality (27), the right-hand side of (26) is calculated as follows:

rhs of (26) = max
[
2�0(x) + 2�0(y1) + 2� 1

2
(y0) − 2� 1

2
(y1), 2� 1

2
(x) + 2� 1

2
(y0),

2�0(x) + 2�0(y0), 2� 1
2
(x) + 2� 1

2
(y2) + 2�0(y0) − 2�0(y2)

]
= max

[
2� 1

2
(x) + 2� 1

2
(y0), 2�0(x) + 2�0(y0)

]
.

Therefore (25) leads (26).
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Remark 5. The identity (26) is an ultradiscretization of the identity (21). Assume1

(
ϑ00(y1)

ϑ11(y1)

)2

<

(
ϑ00(y0)

ϑ11(y0)

)2

<

(
ϑ00(y2)

ϑ11(y2)

)2

. (28)

Write (21) as follows:

ϑ00(x + y0)ϑ00(x − y0){ϑ11(y1)
2ϑ00(y2)

2 − ϑ00(y1)
2ϑ11(y2)

2}
= ϑ00(x + y1)ϑ00(x − y1){ϑ00(y2)

2ϑ11(y0)
2 − ϑ11(y2)

2ϑ00(y0)
2}

+ ϑ00(x + y2)ϑ00(x − y2){ϑ00(y0)
2ϑ11(y1)

2 − ϑ11(y0)
2ϑ00(y1)

2}.
Then all the terms of the above equation are positive for x, yi ∈ R (i = 0, 1, 2). Therefore,
we can ultradiscretize it and obtain (26).

Finally, we show that the solution (22) to the 2D d-Toda equation is ultradiscretized into
the solution (8) to the 2D TTCA together with the dispersion relations. Let τ = iπε

a
for

a, ε ∈ R>0. Put

ρt
n,m = lim

ε→+0
ε log† f t

n,m.

Then, we have

ρt
n,m = a�0(x) + ax2 x = un + vt + wm.

This is the solution (8) with g = 1 and B = 1
a

. In this case, the dispersion relations (12), (13)
and (14) vanish, (9) and (10) are reduced to the following:

�0(v) + v2 = �0(w) + w2 = 0 (29)

and (11) is reduced to (27) with u = y1, v = y0 and w = y2. The relation (18) is reduced to

L = 2a
(
u2 − v2 + � 1

2
(u) − � 1

2
(v)

)
. (30)

Put L = − limε→+0 ε log† δ2. Then the conditions (23) and (24) are ultradiscretized into (30)
and (29) respectively.

4. Conclusion

We propose an ultradiscretization of the Riemann theta function and derive an addition formula.
The addition formula is reduced from an ultradiscrete analogue of the generalized Riemann
theta formula. Using the addition formula, periodic multiwave solutions to the 2D TTCA are
obtained. The solutions are directly connected to the one to the 2D d-Toda equation through
the ultradiscretization. Since the 2D d-Toda equation is equivalent to the discrete KP equation,
the technique to obtain periodic multiwave solutions can be applied to several ultradiscrete
integrable systems such as the box-ball system.
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